
OFFPRINT

Nonlinear plasma waves and wavebreaking in
quantum plasmas

A. Schmidt-Bleker, W. Gassen and H.-J. Kull

EPL, 95 (2011) 55003

Please visit the new website
www.epljournal.org



The Editorial Board invites you  
to submit your letters to EPL

Six good reasons to publish with EPL
We want to work with you to help gain recognition for your high-quality work through worldwide 
visibility and high citations. As an EPL author, you will benefit from:

Quality – The 40+ Co-Editors, who are experts in their fields, oversee the entire peer-review process, 

from selection of the referees to making all final acceptance decisions
1

Impact Factor – The 2009 Impact Factor increased by 31% to 2.893; your work will be in the right 

place to be cited by your peers
2

Speed of processing – We aim to provide you with a quick and efficient service; the median time from 

acceptance to online publication is 30 days
3

High visibility – All articles are free to read for 30 days from online publication date4

International reach – Over 2,000 institutions have access to EPL, enabling your work to be read by 

your peers in 100 countries
5

Open Access – Experimental and theoretical high-energy particle physics articles are currently open 

access at no charge to the author. All other articles are offered open access for a one-off author 

payment (€1,000)

6

Details on preparing, submitting and tracking the progress of your manuscript from submission to 

acceptance are available on the EPL submission website www.epletters.net

If you would like further information about our author service or EPL in general, please visit  

www.epljournal.org or e-mail us at info@epljournal.org

 www.epl journal.org

A LETTERS  JOURNAL 

EXPLORING  THE  FRONTIERS 

OF  PHYSICS

Image: Ornamental multiplication of space-time figures of temperature transformation rules 

(adapted from T. S. Bíró and P. Ván 2010 EPL 89 30001; artistic impression by Frédérique Swist).



EPL Compilation Index

Visit the EPL website to read the latest articles published in 
cutting-edge fields of research from across the whole of physics.  

Each compilation is led by its own Co-Editor, who is a leading 
scientist in that field, and who is responsible for overseeing 
the review process, selecting referees and making publication 
decisions for every manuscript.

• Graphene 

• Liquid Crystals 

• High Transition Temperature Superconductors 

• Quantum Information Processing & Communication

• Biological & Soft Matter Physics

• Atomic, Molecular & Optical Physics

• Bose–Einstein Condensates & Ultracold Gases

• Metamaterials, Nanostructures & Magnetic Materials

• Mathematical Methods

• Physics of Gases, Plasmas & Electric Fields

• High Energy Nuclear Physics 

If you are working on research in any of these areas, the Co-Editors would be 

delighted to receive your submission. Articles should be submitted via the 

automated manuscript system at www.epletters.net

If you would like further information about our author service or EPL  

in general, please visit www.epljournal.org or e-mail us at 

info@epljournal.org

Biaxial strain on lens-shaped quantum rings of different inner 

radii, adapted from Zhang et al 2008 EPL 83 67004.

Artistic impression of electrostatic particle–particle  

interactions in dielectrophoresis, adapted from N Aubry 

and P Singh 2006 EPL 74 623.

Artistic impression of velocity and normal stress profiles 

around a sphere that moves through a polymer solution,

adapted from R Tuinier, J K G Dhont and T-H Fan 2006 EPL 

75 929.

 www.epl journal.org

A LETTERS  JOURNAL 

EXPLORING  THE  FRONTIERS 

OF  PHYSICS

Image: Ornamental multiplication of space-time figures of temperature transformation rules 

(adapted from T. S. Bíró and P. Ván 2010 EPL 89 30001; artistic impression by Frédérique Swist).



September 2011

EPL, 95 (2011) 55003 www.epljournal.org

doi: 10.1209/0295-5075/95/55003

Nonlinear plasma waves and wavebreaking in quantum plasmas

A. Schmidt-Bleker, W. Gassen and H.-J. Kull(a)

Institute for Theory of Statistical Physics, RWTH Aachen University - Templergraben 55,

52056 Aachen, Germany, EU

received 28 June 2011; accepted in final form 26 July 2011
published online 9 August 2011

PACS 52.35.-g – Waves, oscillations, and instabilities in plasmas and intense beams
PACS 52.65.-y – Plasma simulation
PACS 36.40.Gk – Plasma and collective effects in clusters

Abstract – The nonlinear evolution of plasma waves in quantum plasmas is studied up to and
beyond the wavebreaking limit. Wavebreaking sets basic limitations to hydrodynamic models.
In this work, a complete quantum kinetic computational approach is presented. Linear dispersion
relations and Landau damping rates can be accurately reproduced by this method. In the nonlinear
regime wavebreaking amplitudes in quantum plasmas are obtained and compared to theoretical
results. Specific quantum effects can be explained by a nonlinear coupling of plasmon to free-
particle modes in the wavebreaking regime.

editor’s  choice Copyright c© EPLA, 2011

Quantum plasmas are a generic state of matter at high
densities and low temperatures. If the Fermi energy of the
electrons exceeds both the average interaction energy and
the temperature, a weakly coupled degenerate electron gas
is obtained [1]. Dense plasmas occur under various condi-
tions in semi-conductors, metals, metallic clusters, quan-
tum nanostructures, laser-produced solid-state plasmas
and in astrophysical objects like white dwarfs. In the past
years, spectroscopic measurements on isochorically heated
solid-density plasmas became available and plasmons have
been experimentally observed in warm dense matter [2].
The present development of coherent brilliant X-ray radi-
ation sources will offer new possibilities for producing and
probing extreme states of high-density plasmas [3].
In this work, we focus on the quantum nonlinear evolu-

tion of plasma waves. It is well known that the nonlinear
propagation of plasma waves has a fundamental limita-
tion given by the wavebreaking threshold. Wavebreaking
is important for wave energy dissipation and associated
electron heating in collisionless plasmas. Beyond the wave-
breaking threshold simple fluid models fail and a more
general kinetic treatment by the Vlasov-Maxwell theory
is required. Wavebreaking has been found of consider-
able interest in cold [4], thermal [5–7] and relativistic [8,9]
classical plasmas, but apparently the quantum-mechanical
wavebreaking limit in dense warm matter has not been
considered so far. It is our basic goal to investigate the
wavebreaking regime in the framework of quantum kinetic

(a)E-mail: kull@ilt-extern.fraunhofer.de

theory. It is of basic theoretical interest due to the under-
lying violation of both fluid and classical approximations.
In the present paper, we propose a general compu-

tational approach, the carrier-envelope wave (CEW)
method, for ideal quantum plasmas. Its efficiency proves
to be comparable to that of classical particle-in-cell
(PIC) plasma simulations [10] and its validity can be
well confirmed by theoretical results for linear plasma
waves. The CEW method gives a full quantum kinetic
treatment of the nonlinear evolution of plasma waves up
to and beyond the wavebreaking limit. One of the major
achievements of this work is an efficient computational
approach to quantum plasmas that opens the way to a
better understanding of quantum kinetic phenomena in
nonequilibrium plasmas.
Ideal plasmas are fundamentally described by the set

of Vlasov-Maxwell equations. Quantum kinetic equations
for nonideal plasmas are the Boltzmann equation for
quantum gases [11] and more specific quantum kinetic
equations, e.g., for plasmas in strong electromagnetic
fields [12]. In the framework of linear response theory a
well-known theoretical result is the Lindhard dispersion
function for ideal quantum plasmas [13–15]. Beyond the
linear regime, numerical methods are of major importance.
Most previous computational approaches have been based
on the Wigner representation of the quantum Vlasov
equation [16] and basic concepts of PIC simulations
have been adopted in a semi-classical framework [17].
These approaches approximate quantum diffraction effects
either by suitably chosen pseudo-potentials [18–20] or
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by pseudo-particles [21]. Direct numerical solutions of
the complete Wigner-Poisson system have been obtained
with Fourier-transform and split-operator techniques [22].
However, since the Wigner function is basically defined
on a 6d phase space, direct numerical solutions become
exceedingly expensive and apparently only 1d calculations
have been performed so far [23,24]. Other approximate
approaches are based on hydrodynamic [25,26] and multi-
stream kinetic models [27,28]. Occasionally, it is also
instructive to consider the simpler Schrödinger-Poisson
system for a single wave function and its Madelung
transform [24,29].
Consider an ideal quantum plasma with electrostatic

interaction, described by the quantum Vlasov equation for
the single-particle statistical operator ρ and the Poisson
equation for the self-consistent electrostatic potential φ,

i�∂tρ= [H, ρ], Δφ=−4πq(ne−n0). (1)

Here H = P
2

2m + qφ is the Hamiltonian for an electron with
massm and charge q in the potential φ, ne = n0 Tr{ρδ(R−
r)} is the electron density, n0 is a reference density in a
neutral homogeneous plasma equilibrium,R and P denote
position and momentum operators, respectively, and Tr
is the trace. It is convenient to scale ne by n0, which
corresponds to a normalization Tr ρ= V of the trace of
ρ to the volume V .
The computational advantage of PIC simulations results

from the propagation of a representative set of phase-space
points. In analogy to the sampling of the distribution func-
tion by representative phase-space points, the statistical
operator of a quantum system can be expressed by an
ensemble of representative quantum states |Ψs〉, occurring
with probabilities ws, respectively,

ρ=
∑

s

ws|Ψs〉〈Ψs|,
∑

s

ws = 1. (2)

The quantum Vlasov equation in eq. (1) is equivalent to
the propagation of the quantum states according to the
time-dependent Schrödinger equation (TDSE),

i�∂t|Ψs〉=H|Ψs〉. (3)

Calculating the evolution of the quantum states from
initial conditions completely determines the evolution of
the statistical operator ρ and of the related expectation
values 〈A〉=Tr(ρA) of any single-particle observable A.
It is noted that these equations are just the Hartree self-
consistent field equations.
In a thermodynamic equilibrium with temperature T

and chemical potential μ, the ensemble of single-particle
states is given by momentum eigenstates |Ψs〉= |ps〉. In a
system with N = n0V particles the occupation probability
of a given state s is given by the Fermi distribution,

Nws =
1

eβ(ǫs−μ)+1
, ǫs =

p2s
2m
, β =

1

T
. (4)

In nonequilibrium the plane waves can be generalized to
carrier-envelope (CE) waves,

Ψs(r, t) =ψs(r, t)e
i

�
(ps·r−ǫst). (5)

The carrier waves are sufficient to describe the equilibrium
properties in accordance with the Pauli principle. The
envelopes ψs(r, t) have to be self-consistently calculated
together with the interaction potential.
An important step of CEW computations consists in a

transformation of the Schrödinger equation (3) to the rest
frame of the carrier wave. This allows one to calculate
all envelopes with about the same numerical resolution.
The potential is calculated from the wave functions at
their positions in the laboratory frame. Defining the
plasma frequency ωp =

√

4πq2n0/m and using the units

ω−1p for time and
√

�/(mωp) for length, the final equations
are

i∂tψs(r
′, t) =

[

−1
2
Δ′−φ(r′+pst, t)

]

ψs(r
′, t), (6a)

Δφ(r, t) =−1+
∑

s

ws|ψs(r−pst, t)|2, (6b)

where r′ = r−pst denotes positions in the wave frames.
Note that the carrier momenta enter these equations
just as velocities of potentials and densities. The initial
conditions for the envelopes have been taken in the form

ψ=A(x)eiS(x), n=A2, v= ∂xS. (7)

The amplitude A is determined by the density n and the
phase S by the velocity v of the stream. This identifi-
cation can be based on the Madelung fluid representa-
tion of the Schrödinger equation. It also follows from the
zeroth- and first-order moments of the Wigner distribu-
tion derived from eq. (7). Specifically, we assume in the
following the initial conditions A= 1, S = (v0/k) sin(kx)
for a velocity perturbation v0 cos(kx) in a spatially homo-
geneous plasma.
Quantum plasma computations with CE waves have

a number of attractive features. i) The envelopes often
vary only weakly with the carrier momenta. It is there-
fore sufficient to use a coarse-grained description with a
limited number of envelopes. This number can be chosen
at a given Fermi energy independent of the system size.
In the present calculations we have observed rapid conver-
gence of the results for about 50–100 CE waves. ii) The CE
waves are calculated in a completely deterministic manner
without introducing statistical noise. iii) The waves with
different carrier momenta are members of the ensem-
ble. Therefore, they add incoherently to the density. In
contrast, any superposition of waves that is present in
the envelopes adds coherently, indicating the quantum
features of the interaction. iv) Classical particles with
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Fig. 1: Frequency ωr and damping rate −ωi of small-amplitude
plasma oscillations. The numerical results are compared with
corresponding results from the quantum (Lindhard) and clas-
sical (Landau) dielectric functions. Parameters: EF /�ωp = 1.1,
T/�ωp = 1.0; number of CE waves: 101.

momentum ps within some averaging volume Δ
3ps may

be viewed as a realization of the density of one CE wave,

n0ws|ψs(r)|2←→ fs(r,ps)Δ3ps, (8)

where fs(r,ps) denotes the classical single-particle distri-
bution function. For each carrier momentum the compu-
tational effort of calculating the CE wave by the TDSE
is comparable to the classical trajectory calculations for
the corresponding particles. In both cases the interaction
potential has to be calculated on a spatial grid with about
the same numerical resolution.
The numerical method has been validated by calcu-

lating the propagation and damping of small amplitude
plasma waves. We have solved the set of Schrödinger-
Vlasov equations numerically with the Crank-Nicolson
scheme [30]. Initial conditions with a sufficiently small
velocity amplitude v0 and periodic boundary conditions
have been prescribed. The time evolution of the poten-
tial has been fitted to a damped oscillation ∝ eωitcos(ωrt)
and thereby the frequency ωr and damping rates −ωi
have been determined. As a benchmark problem, a Fermi
energy EF = 1.1�ωp and a Maxwellian velocity distribu-
tion with temperature T = �ωp have been assumed. In
fig. 1, the numerical solution is compared with corre-
sponding results obtained from the quantum-mechanical
and classical dielectric functions. It can be seen that the
CEW method fully accounts for the quantum-mechanical
solution including Landau damping. In contrast, PIC
simulations would only reproduce the classical results,
showing different asymptotes at large wave numbers. In
fig. 2, some dispersion relations for finite temperatures
are represented as a function of the degeneracy parameter
χ=EF /T . With increasing temperatures the numerical
results converge to the theoretical dispersion relation for
a Maxwellian distribution. In all cases considered, there
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Fig. 2: Frequency ωr as a function of the degeneracy parameter
χ=EF /T and corresponding results of the Lindhard dielectric
theory for a Fermi and Maxwellian distribution. Parameters:
EF = 0.8�ωp; number of CE waves: 101.

is excellent quantitative agreement between the computa-
tional and theoretical results, demonstrating the feasibiliy
and accuracy of CEW computations.
In the nonlinear evolution, plasma waves are subject

to wavebreaking. The wavebreaking criterion was first
derived by Dawson for a cold plasma [4]. It occurs
when the Lagrangian coordinates x(a) of neighboring fluid
elements with initial positions a approach each other, i.e.
dx= (∂x(a)/∂a) da= 0. For a sinusoidal perturbation the
wavebreaking threshold is reached when the amplitude
of the velocity perturbation becomes equal to the phase
velocity, v0 = ωp/k, or, alternatively, when the electric
field amplitude becomes equal to Emax = (m/q)ωpvph. For
convenience, these thresholds are written in physical units.
In a classical thermal plasma the wavebreaking amplitudes
are reduced by the thermal motion of the particles. The
wavebreaking amplitudes decrease from Emax to zero
as the thermal velocity increases from zero up to the
phase velocity vph. The thermal-plasma wavebreaking
threshold was first derived by Coffey [5] in the framework
of a waterbag model with a uniform velocity distribution
within −vmax < v < vmax. The Coffey result is given by

(E/Emax)
2 = 1+2ṽ− ṽ

2

3
− 8
3

√
ṽ, (9)

where ṽ= vmax/vph = kvmax/ω [5]. As seen in fig. 4 (solid
line), the wavebreaking amplitudes are monotonically
decreasing with vmax/vph.
We have performed CEW calculations of the wavebreak-

ing amplitudes for a one-dimensional Fermi distribution
at temperature zero with Fermi velocity vF . It can be
compared to a waterbag model with maximum velocity
vmax = vF . The wavebreaking threshold was determined
by increasing the perturbation amplitude v0 until wave-
breaking was observed within one plasma period after the
first occurrence of the density maximum. The criterion for
wavebreaking can be defined quite precisely by looking at
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Fig. 3: (Color online) Phase-space (bottom) and density (top)
distributions of the zero-momentum CE wave after wavebreak-
ing. Wavebreaking is accompanied by a Z-shaped distortion of
the phase-space distribution and by corresponding side maxima
in the density. The quantum-mechanical Wigner function
(eq. (10) in a.u.) is compared to corresponding classical parti-
cle streams (solid lines) with zero and maximum flow veloci-
ties. Inset: classical and quantum-mechanical densities in the
broken-wave regime. Parameters: vmax/vph = 0.1, EF /�ωp =
2, E/Emax = 0.75; number of CE waves or classical particle
streams: 51.

the Wigner distribution function for the zero-momentum
CE wave function. The Wigner function, normalized to
the particle number, is defined by

f(x, v) =
n0
2π

+∞
∫

−∞

dr ψ
(

x+
r

2

)

ψ∗
(

x− r
2

)

e−ivr. (10)

At wavebreaking the classical cold-plasma phase-space
trajectory v= v(x(a)) develops a vertical slope, since

∂v

∂x
=
∂v

∂a

1

∂x/∂a
(11)

approaches infinity when ∂x/∂a→ 0. The broken wave
develops a Z-shaped form as shown in fig. 3. Compar-
isons with classical PIC simulations, indicated by solid
lines, show that the zero-momentum flow is most sensitive
to breaking, while the streams with higher momenta only
break later or at higher amplitudes. Wavebreaking ampli-
tudes obtained in this manner are shown in fig. 4. The
results are in excellent agreement with eq. (9), demonstrat-
ing that the classical waterbag model with the appropriate
quantum-mechanical cut-off at vmax = vF accounts very
well for the wavebreaking amplitudes in quantum plas-
mas. For more realistic 3d velocity distributions, vmax has
to be replaced by the sound velocity c0. This amounts to
setting ṽ= c0/vph =

√

3/5vF /vph for a degenerate quan-
tum plasma. Finally, it is noted that the wavebreaking
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Fig. 4: (Color online) Wavebreaking amplitudes, calculated
by the multi-stream CEW method (vmax = vF ) for a fixed
wave number k= 0.1

√

mωp/� . Comparison is made with the
classical waterbag model and with the quantum-mechanical
single-stream model (vmax =

√

�ωp/m).

limit defines the maximum fields for stationary waves but
higher fields may be excited in nonstationary cases [7].
Although the quantum wavebreaking amplitudes closely

follow the classical prediction with the appropriate sound
velocity, specific nonclassical features can be observed in
the broken-wave regime. These are most pronounced in the
density distribution of the zero-momentum flow, shown
in the inset of fig. 3. While the classical density peak is
split into a double peak, the quantum-mechanical density
distribution shows a single broad peak with side maxima.
The different density profiles result from the cancellation
of positive and negative parts in the Wigner distribu-
tion. To emphasize the differences between the classical
and quantum-mechanical density distributions we have
compared the densities for the single stream with initial
momentum ps = 0, only. In the total density resulting from
the multi-stream distribution these differences are much
less pronounced.
To gain a more detailed understanding of the quantum

interferences observed, we have studied wavebreaking by
a single-stream model, consisting of a single CE wave with
zero carrier momentum. It applies to a degenerate plasma
at zero temperature with a Fermi energy of the order of
the plasmon energy. The single-stream model yields the
well-known dispersion relation [29]

ω2 = 1+
k4

4
(12)

for small-amplitude oscillations. It shows that there exist
two modes propagating at a given phase velocity vph = ω/k
with the wave numbers

k2 = 2v2ph(1±
√

1− 1/v4ph). (13)

Stable propagation is limited to phase velocities vph > 1. In
the waterbag model, the limit of small-amplitude propaga-
tion is given by vph = vmax. Since vmax = 1 corresponds to
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vmax =
√

�ωp/m , in usual units, the single-stream model
can account for an effective Fermi energy of the order of
the plasmon energy. At large phase velocities, the high-
frequency mode (upper sign) corresponds to free-particle
motion, the low-frequency mode (lower sign) to plasma
oscillations at the plasma frequency. The nonlinear evolu-
tion of these modes can be described in the rest frame of
the wave, moving with phase velocity −vph, by the set of
stationary Madelung-Poisson equations,

∂2zφ= n− 1, (14a)

∂2zA+(2φ− v2)A= 0, (14b)

with n= vph/v=A
2 and v= ∂zS, defined by the wave

function ψ=AeiS . Note that eq. (14b) is the time-
independent Schrödinger equation with the kinetic energy
of the flow separated from the remaining kinetic energy.
Neglecting ∂2zA corresponds to the quasiclassical approx-
imation, leading to the cold-plasma wavebreaking ampli-
tude Emax. In general, the quasiclassical approximation
becomes violated at the wavebreaking point. We have
numerically solved eqs. (14) by posing initial conditions
in a minimum of the density (∂zA= ∂zφ= 0). The initial
values for φ and A have been varied to obtain stationary
solutions for at least 10 periods. If the initial minimum
density gets lower than a critical value, the density devel-
ops interference fringes in the subsequent density maxi-
mum, similar to the ones seen in fig. 3. Taking this critical
value as the criterion of wavebreaking, we find the maxi-
mum electric fields shown in fig. 4 by squared symbols.
One can clearly see the qualitative agreement of the full
quantum kinetic simulation with the single-stream model
for stationary modes.
It is concluded that the CEW method allows one to

study the quantum kinetic evolution of nonlinear plasma
waves. Wavebreaking amplitudes can be predicted in
accordance with a waterbag model with the appropri-
ate quantum-mechanical cut-off. Moreover, it is found
that wavebreaking amplitudes at negligible fluid pressure
are limited quantum-mechanically by nonlinearly coupled
plasmon and free-particle modes. The CEW method has
been introduced here for a relatively simple 1d electro-
static model with periodic boundary conditions. However,
due to its close conceptual relationship with the classical
PIC method, it provides a perspective for a wider scope
of beam plasma studies in the quantum kinetic regime.
Two and three dimensions, electromagnetic interactions,
inhomogeneous and bounded systems as well as correlated
systems based on the quantum Boltzmann equation [11]
are well conceiveable as promising fields for the extension
of the computational method in forthcoming work.
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